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Wilton ripples generated by a moving pressure
distribution
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The two-dimensional steady potential free surface flow due to a pressure distribution
moving at a constant velocity at the surface of a fluid of infinite depth is considered.
The effects of gravity and surface tension are included in the dynamic boundary
condition. The fully nonlinear problem is solved numerically by a boundary integral
equation method and the results are compared with those of the linear theory of
Rayleigh (1883). It is found that for some values of the capillary number, the nonlinear
solutions do not approach the linear solution of Rayleigh as the magnitude of the
pressure distribution approaches zero. Appropriate linear and nonlinear solutions are
constructed.

1. Introduction
A small object moving at a sufficiently large constant velocity U at the surface of a

fluid produces a train of waves behind it and another train in front. Rayleigh (1883)
studied this phenomenon by using potential flow theory and by assuming that the
disturbance due to the object is small. The equations can then be linearized around a
uniform stream with constant velocity U and steady solutions (in a frame of reference
moving with the object) are found by Fourier transforms.

Rayleigh’s solutions can be described in terms of the critical velocity

Umin =

(
4Tg

ρ

)1/4

. (1.1)

Here T is the surface tension, g the acceleration due to gravity and ρ the density.
There are no periodic linear waves travelling at a phase velocity U smaller than

Umin. Therefore for U < Umin, the free surface at large distance from the object is
waveless and flat. For U > Umin, there are two possible trains of periodic waves.
The solution of the free-surface flow due to a moving object is thus non-unique for
U > Umin, since multiples of the two trains of waves can always be superimposed
on any solution to generate new solutions. However a unique solution is obtained
by imposing the radiation condition which requires that there is no supply of energy
from infinity. It is then found that a train of waves with the larger wavelength appears
behind the object and one with a smaller wavelength in front. Rayleigh showed that a
convenient way to impose the radiation condition is to solve the problem with some
artificial viscosity µ (known as a Rayleigh viscosity) and then take the limit as µ→ 0.
Alternative dissipation mechanisms were used by Spivak, Vanden-Broeck & Miloh
(2001) and Vanden-Broeck (2001).

Boundary integral equation methods can be used to solve the fully nonlinear
problem numerically (Asavanant & Vanden-Broeck 1994; Dias & Vanden-Broeck
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1992; Vanden-Broeck 2001). We should expect these nonlinear solutions to approach
Rayleigh’s linear solution as the size of the object approaches zero. In this paper
we show that there are particular values of the Weber number for which this is
not the case. For these values we show that the nonlinear solutions approach linear
solutions which differ from Rayleigh’s solutions as the size of the object tends to
zero. It is found that this discrepancy is related to the fact that there are many
families of nonlinear gravity–capillary periodic waves but only one family of linear
gravity–capillary periodic waves. The results described in this paper are qualitatively
independent of the nature of the object (submerged object, surface piercing object or
pressure distribution). Here we present all our results for a prescribed distribution of
pressure. This can be viewed as an indirect way to compute the free surface flow due
to a moving surface piercing object since the shape of the free surface resulting from
the pressure distribution can be replaced at the end of the calculations by a rigid
wall.

2. Formulation
We consider the nonlinear free surface flow generated by a pressure distribution

moving to the left with a constant velocity U. The fluid is assumed to be inviscid
and incompressible and the flow to be irrotational. The depth of the fluid is infinite.
We choose a frame of reference moving with the pressure distribution and the y-axis
directed vertically upwards. We assume that the flow is steady and that the pressure
distribution is symmetric with respect to x = 0. As y → −∞ we have a uniform
stream with a constant velocity U in the x-direction. We introduce the potential
function φ and the streamfunction ψ. We choose ψ = 0 on the free surface. We
define dimensionless variables by choosing U2/g as the unit length and U as the unit
velocity.

The problem can be formulated in terms of the potential function φ as

∇2φ = 0 in −∞ < y < η(x), (2.1)

1

2

[(
∂φ

∂x

)2

+

(
∂φ

∂y

)2
]

+ η(x)−W ηxx

(1 + η2
x)

3/2
+
P0(x)

ρ
=

1

2
on y = η(x), (2.2)

∂φ

∂y
=
∂φ

∂x
ηx(x) on y = η(x), (2.3)

∂φ

∂x
→ 1 as y → −∞, (2.4)

where

W =
Tg

ρU4
(2.5)

is the Weber number. Here y = η(x) is the unknown shape of the free surface and
P0(x) a prescribed distribution of pressure which tends to zero as |x| → ∞. The
acceleration due to gravity is acting in the negative y-direction. Equations (2.2) and
(2.3) are the dynamic and kinematic boundary conditions on the free surface. The
choice of the Bernoulli constant on the right-hand side of (2.2) fixes the origin of y
as the undisturbed free surface level.

For given P0(x) and W , we need to solve (2.1) with the conditions (2.2)–(2.4). This
is a nonlinear free surface flow problem for which no general exact solution is known.
Therefore analytical and numerical approximations are discussed in the next sections.
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The solutions were found to be qualitatively independent of the particular choice
for the function P0(x). All the calculations presented in this paper are for

P0(x) = ε e−5x2

. (2.6)

Here ε is a positive parameter. Similar results can be obtained with other distributions
of pressure or other disturbances.

3. Rayleigh’s linear solution
If ε is small, the problem (2.1)–(2.4) can be linearized by assuming a small pertur-

bation around a uniform stream with constant velocity 1. This yields

∇2φ = 0 in −∞ < y < 0, (3.1)

∂φ

∂x
− 1 + η(x)−Wηxx(x) +

P0(x)

ρ
= 0 on y = 0, (3.2)

∂φ

∂y
= ηx(x) on y = 0, (3.3)

∂φ

∂x
→ 1 as y → −∞. (3.4)

The problem (3.1)–(3.4) was solved by Rayleigh (1883) using Fourier transforms.
Rayleigh noticed that with P0(x) = 0 (i.e. ε = 0 in (2.6)) it has the solution

φ0 = x− A eky sin k(x+ δ) + B, (3.5)

η0 = A cos k(x+ δ). (3.6)

Here A, B and δ are arbitrary constants. Since φ is only defined up to an arbitrary
additive constant, we can set B = 0 without loss of generality. The constant k in (3.5)
and (3.6) is a solution of

Wk2 − k + 1 = 0. (3.7)

For W > 1/4, the roots of (3.7) are complex and we need to set the constant
A in (3.5) and (3.6) equal to zero for φ and η to be bounded for all x. However
for W < 1/4, A is arbitrary. There are then two non-trivial solutions of (3.5), (3.6)
corresponding to the two roots

k± =
1± (1− 4W )1/2

2W
(3.8)

of (3.7). These two solutions are trains of waves of wavenumber k±. Because of the
linearity of the equations, arbitrary multiples of φ0 − x and η0 can be added to any
solution of (3.1)–(3.4) with P0(x) 6= 0. This implies that the solution of (3.1)–(3.4)
with P0(x) 6= 0 is not unique. We note that W = 1/4 corresponds to U = Umin where
Umin is defined in (1.1). A unique solution of (3.1)–(3.4) can be obtained by applying
the radiation condition which requires that there is no supply of energy from infinity.
Rayleigh (1883) showed that a convenient way to impose the radiation condition is
to introduce an artificial viscosity µ > 0 by rewriting (3.2) as

∂φ

∂x
− 1 + η(x)−Wηxx(x) +

P0(x)

ρ
+ µ(x− φ) = 0 on y = 0 (3.9)

and to solve the problem defined by (3.1), (3.9), (3.3) and (3.4). The solution is then
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Figure 1. Free surface profile of Rayleigh’s linear solution for W = 2/9 and ε = 10−5.
.

unique and the solution of (3.1)–(3.4) satisfying the radiation condition is obtained
by taking the limit µ→ 0.

A typical free surface profile for W = 2/9 is shown in figure 1. As |x| → ∞, the
solution approaches periodic trains of waves of constant amplitude. These trains of
waves are described by (3.5) and (3.6) with k = k±. Here A and δ are no longer
arbitrary and their values are part of the solution. The train of waves with the longer
wavelength (i.e. k = k−) appears as x→∞ and the train with the shorter wavelength
(i.e. k = k+) as x→ −∞.

It is usually assumed that linear solutions such as the one shown in figure 1
approximate nonlinear solutions of (2.1)–(2.4) when the parameter ε in (2.6) is small.
We show in the next sections that there are particular values of W for which it is not
the case.

4. Wilton ripples
In the previous section, we showed that Rayleigh’s solution for W < 1/4 is

characterized by linear trains of waves in the far field (i.e. as |x| → ∞). These trains
of periodic waves are described by (3.5) and (3.6) with k given by (3.8).

Nonlinear solutions of (2.1)–(2.4) are characterized by nonlinear periodic waves in
the far field. In this section, we examine some properties of nonlinear periodic gravity–
capillary waves. This will provide useful information on the asymptotic behaviour
of the nonlinear solutions of (2.1)–(2.4) with P0(x) 6= 0 as |x| → ∞. Solutions for
nonlinear periodic waves can be constructed numerically (see for example Schwartz
& Vanden-Broeck 1979; Chen & Saffman 1979; Hogan 1980) or analytically by using
perturbation theory. Here we follow the analytical approach and seek solutions of
(2.1)–(2.4) with P0(x) = 0 by assuming an expansion in powers of the amplitude of
the wave. This is a classical calculation. The pioneering work in this direction was
by Stokes (1847) who calculated a one-parameter family of solutions for pure gravity
waves. Wilton (1915) generalized Stokes’ calculation by including the effect of surface
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tension. His results and more recent calculations show that in contrast to pure gravity
waves, there is an infinite number of families of gravity–capillary solutions.

The origin of this non-uniqueness can be understood by examining conditions
under which linear waves of wavenumbers k and nk travel at the same speed U (i.e.
are characterized by the same W ). Here n is a positive integer. Using (3.7) we obtain

Wn2k2 − nk + 1 = Wk2 − k + 1 = 0. (4.1)

Relations (4.1) imply

W =
n

(n+ 1)2
. (4.2)

It then follows that when (4.2) is satisfied, the general solution for linear periodic
waves of wavenumber k is not (3.5), (3.6) but

φ0 = x− A eky sin k(x+ δ)− A∗ enky sin nk(x+ δ) + B, (4.3)

η0 = A cos k(x+ δ) + A∗ cos nk(x+ δ), (4.4)

where A∗ is an arbitrary constant.
When constructing a nonlinear solution as an expansion in powers of the amplitude,

(4.3) and (4.4) appear as the first terms in the expansion. It is found that higher-order
terms in the expansion can only be calculated if a solvability condition is satisfied. This
condition fixes the value of A∗. For example for n = 2, it is found that A∗ = ±A/2,
so that the solution of (3.1)–(3.4) with P0(x) = 0 and

W = 2
9

(4.5)

is

φ0 = x− A eky sin k(x+ δ)∓ 1
2
A e2ky sin 2k(x+ δ) + B, (4.6)

η0 = A cos k(x+ δ)± 1
2
A cos 2k(x+ δ). (4.7)

Both (4.3), (4.4) and (4.6), (4.7) satisfy the linear equations (3.1)–(3.4) with P0(x) = 0.
In fact (4.6), (4.7) is a particular case of (4.3), (4.4) where the arbitrary constant A∗
is assigned the value ±A/2. However (4.6), (4.7) is an approximation of a nonlinear
wave as its amplitude approaches zero, whereas (4.3), (4.4) with A∗ 6= ±A/2 is not.

We note that there are two waves (4.6), (4.7) corresponding to the + and − signs.
One has a crest dimple whereas the other has a trough dimple. These two waves are
often referred to as the Wilton ripples. This illustrates the non-uniqueness mentioned
earlier in this section.

The profile of figure 1 is the solution of the linear system (3.1)–(3.4) satisfying the
radiation condition with P0(x) and W given by (2.6) and (4.5). It is characterized by
the train of waves (4.3) and (4.4) with A∗ = 0 as |x| → ∞. Substituting (4.5) into (3.8),
we find k = k+ = 3 as x→ −∞ and k = k− = 3/2 as x→∞. The above results show
that there are no nonlinear periodic waves approaching the train of linear periodic
waves with k = 3/2 as x =→ ∞ in figure 1. This implies that there is no nonlinear
solution of (2.1)–(2.4) which approaches the linear solution of figure 1 as ε → 0.
In the next Section, we construct numerically linear and nonlinear solutions which
approach each other as ε→ 0.

5. Nonlinear solutions
We solve the nonlinear problem (3.1)–(3.4) numerically by a boundary integral

equation method. The details of the numerical procedure are similar to those described



198 J.-M. Vanden-Broeck

in Asavanant & Vanden-Broeck (1994), so that only the main ideas will be summarized
here. We seek z = x+ iy as an analytic function of f = φ+ iψ in the lower half-plane
ψ < 0. We choose φ = 0 at x = 0. We rewrite the nonlinear dynamic boundary
condition (2.2) on the free surface as

1

2

1

x′2 + y′2
+ y −W x′y′′ − y′x′′

(x′2 + y′2)3/2
+
P0(φ)

ρ
=

1

2
. (5.1)

and the linear dynamic boundary condition (3.2) as

1− x′ + y −Wy′′ +
P0(φ)

ρ
=

1

2
. (5.2)

Here x(φ) and y(φ) are the values of x and y on the free surface and x′ and y′ their
derivatives with respect to φ.

We choose

P0(φ) = ε e−5φ2

. (5.3)

The expressions (5.2) and (5.3) are consistent with (3.2) and (2.6) since x can be
replaced by φ without affecting the order of accuracy of the linear solution.

Next we apply the Cauchy integral formula to the function x′ + iy′ − 1 in the
complex f-plane with a contour consisting of the free surface and a half-circle of
arbitrary large radius in the lower half-plane. Since x′ + iy′ − 1 → 0 as ψ → −∞, it
can be shown that there is no contribution from the half-circle. Taking the real part
we obtain

x′(φ) = 1− 1

π

∫ ∞
−∞

y′(ϕ)

ϕ− φ dϕ. (5.4)

The integral in (5.4) is a Cauchy principal value.
Eliminating x′ between (5.1) and (5.4) we obtain a nonlinear integro–differential

equation for the unknown function y′. Similarly eliminating x′ between (5.2) and (5.4)
we obtain the corresponding linear integro–differential equation for the unknown
function y′.

To solve these equations numerically we introduce the mesh points

φI = − (N − 1)E

2
+ (I − 1)E, I = 1, . . . , N (5.5)

and the unknowns

y′I = y′(φI ). (5.6)

Here E is the interval of discretization.
The nonlinear and linear integro–differential equations are discretized and satisfied

at the intermediate mesh points

φI+1/2 =
φI + φI+1

2
, I = 1, . . . , N − 1. (5.7)

This leads to N−1 nonlinear algebraic equations. The Cauchy principal value in (5.4)
is approximated by the trapezoidal rule with a summation over the mesh points (5.5).
This yields

x′(φI+1/2) = 1− 1

π

N∑
J=1

wJ
y′J

φJ − φI+1/2

, (5.8)

where w1 = wN = E/2 and wJ = E otherwise. The symmetry of the quadrature
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enables us to evaluate the Cauchy principal value integral in (5.4) as if it were an
ordinary integral. More details can be found in Asavanant & Vanden-Broeck (1994).

The approximation (5.8) replaces the integral from −∞ to ∞ in (5.4) by an integral
from −A to A where A = (N − 1)E/2. To obtain the results presented here, we
improve this truncation by first rewriting (5.4) as

x′(φ) = 1− 1

π

∫ A

−A
y′(ϕ)

ϕ− φ dϕ− 1

π

∫ −A
−B

y′l(ϕ)

ϕ− φ dϕ− 1

π

∫ B

A

y′r(ϕ)

ϕ− φ dϕ (5.9)

before applying the trapezoidal rule. Here B � A. For A sufficiently large, y′l and
y′r are the periodic trains of waves of § 4. We present results for W = 2/9. For this
value of the Weber number, we showed that the Rayleigh’s solution of figure 1 fails
in the nonlinear regime because there are no nonlinear periodic waves approaching
the linear wave on the far right of figure 1 as ε → 0. The discussion at the end of
§ 4 suggests that the correct nonlinear solutions for W = 2/9 should have a train of
Wilton ripples on the far right. As we shall see this is confirmed by our numerical
calculations. We restrict our calculations to ε� 1, so that formulae for y′l and y′r can
be derived from (4.6) and (4.7). Replacing x by φ in (4.7) and differentiating with
respect to φ yields

y′r = −Ak− sin k−(φ+ δ)∓ Ak− sin 2k−(φ+ δ). (5.10)

Similarly (3.6) yields

y′l = −A∗k+ sin k+(φ+ δ∗). (5.11)

The constants A,A∗, δ, δ∗ are found by imposing the continuity conditions

y′r(φN) = y′N, y′r(φN−1) = y′N−1, y′r(φN−2) = y′N−2, (5.12)

y′l(φ1) = y′1, y′l(φ2) = y′2. (5.13)

Relation (5.11) imposes a train of waves of short wavelength on the far left similar
to the one on the far right of figure 1. Relation (5.10) replaces the train of waves on
the far left of figure 1 by Wilton ripples in accordance with the above discussion.

Relations (5.12) and (5.13) together with the N−1 equations obtained by discretizing
the nonlinear or linear integro–differential equations define a system ofN+4 nonlinear
algebraic equations for the N + 4 unknowns A,A∗, δ, δ∗ and y′I , I = 1, . . . , N. This
system is solved by Newton’s method.

The non-uniqueness of the linear problem discussed in § 3 implies that numerical
solutions of the linear integral equation can be obtained by replacing (5.10) by

y′r = −Ak− sin k−(φ+ δ)∓ Āk− sin 2k−(φ+ δ) (5.14)

where Ā is arbitrary. The linear solution satisfying the radiation condition (i.e.
Rayleigh’s solution) is obtained by setting Ā = 0. It is shown in figure 1.

Numerical solutions of the nonlinear problem can only be obtained when Ā = ±A
in (5.14) (i.e. by using (5.10)). For other values of Ā, the scheme does not converge.
There are two nonlinear solutions corresponding to the ± signs in (5.10). These are
shown in figures 2(a) and 2(b). As x → ∞, these solutions approach Wilton ripples.
Since ε is small, the nonlinear solutions of figure 2 approximately satisfy the linear
equations (3.1)–(3.4). However they differ from Rayleigh’s solution of figure 1. As
expected the difference between the nonlinear solutions (figure 2) and Rayleigh’s
solution (figure 1) is a linear train of wave of wavenumber k = 3. This is illustrated in
figure 3 where we show the difference between the profiles of figure 2(a) and figure 1.
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Figure 2. Free surface profile of a nonlinear solution for W = 2/9 and ε = 10−5,
(a) corresponding to the + sign in (5.10) and (b) to the − sign.

.

0.0001

0

–0.0001
–10 –5 0 5 10

Figure 3. The dotted line is the difference between the profiles of figures 1 and 2(a), represented
by dashed and solid lines respectively.

6. Conclusions
We have revisited the problem of gravity–capillary waves generated by a moving

pressure distribution. We have shown that for some values of the Weber number
the classical linear solution fails to approximate nonlinear solutions. Appropriate
solutions containing Wilton ripples were derived for a particular value of the Weber
number. Our calculations were restricted to steady flows in water of infinite depth. The
corresponding time-dependent problem in shallow water was considered by Milewski
& Vanden-Broeck (1999). These authors model the flow by a non-homogeneous fifth-
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order Korteweg–de Vries equation. Their results show that in addition to the steady
solutions there are many unsteady solutions. Interestingly some of their solutions
exhibit Wilton ripples (see figure 5 in Milewski & Vanden-Broeck 1999). This suggests
that solutions similar to those in figure 2 could also be obtained by solving the
complete nonlinear time-dependent problem.

This work was supported by EPSRC and the Leverhulme Trust.
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